Aplikasi Analisis Sentimen Isu Kesehatan di Media Sosial dengan Metode Convolutional Neural Network Berbasis Web

Main Article Content

Fajar Astuti Hermawati
Nenden Siti Fatonah
Hermawan Ali Mangambali

Abstract

Media sosial telah mengalami pertumbuhan pesat di berbagai sektor, termasuk bidang medis. Pengguna aktif berpartisipasi aktif dalam komunitas kesehatan, berbagi informasi dan pengalaman. Akses terhadap media sosial telah menjadi sarana utama untuk mencari informasi kesehatan. Platform media sosial populer yang digunakan untuk tujuan ini termasuk WhatsApp, Facebook, Instagram, Youtube, dan Twitter. Media sosial juga memungkinkan penggunanya untuk mengungkapkan pendapatnya melalui postingan dan komentar. Analisis sentimen diperlukan untuk memahami opini pengguna. Tahap awal melibatkan pengumpulan data dari platform media sosial seperti Facebook, dengan fokus pada postingan terkait tagar penyakit. Selanjutnya, teks tersebut mengalami pra-pemrosesan yang bertujuan untuk membersihkan, memformat, dan menata teks untuk dianalisis. Pada penelitian ini hasil pengujian menggunakan algoritma Convolutional Neural Network memperoleh performa akurasi 77% untuk distribusi dataset 80:20.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hermawati, F. A., Fatonah, N. S., & Mangambali, H. A. (2024). Aplikasi Analisis Sentimen Isu Kesehatan di Media Sosial dengan Metode Convolutional Neural Network Berbasis Web. Jurnal Eksplora Informatika, 12(2), 120-128. https://doi.org/10.30864/eksplora.v12i2.1012
Section
Articles
Author Biographies

Nenden Siti Fatonah, Universitas Esa Unggul

Magister Ilmu Komputer

Hermawan Ali Mangambali, Universitas 17 Agustus 1945 Surabaya

Teknik Informatika

References

M. Rodríguez-Ibánez, A. Casánez-Ventura, F. Castejón-Mateos, and P. M. Cuenca-Jiménez, “A review on sentiment analysis from social media platforms,” Expert Systems with Applications, vol. 223. Elsevier Ltd, Aug. 01, 2023. doi: 10.1016/j.eswa.2023.119862.

P. A. Permatasari, L. Linawati, and L. Jasa, “Survei Tentang Analisis Sentimen Pada Media Sosial,” Majalah Ilmiah Teknologi Elektro, vol. 20, no. 2, p. 177, Dec. 2021, doi: 10.24843/mite.2021.v20i02.p01.

J. Park, H. Leung, and K. Ma, “Information Fusion of Stock Prices and Sentiment in Social Media using Granger Causality,” in 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Daegu, Korea, Nov. 2017.

K. Ma and H. Leung, “Prediction of Stock Prices with Sentiment Fusion and SVM Granger Causality,” 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2019, doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00046.

A. Aipe, M. N. Sundararaman, and A. Ekbal, “Sentiment-Aware Recommendation System for Healthcare using Social Media,” in Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, 2019. doi: https://doi.org/10.1007/978-3-031-24340-0_13.

J. Wu et al., “A sentiment analysis driven method based on public and personal preferences with correlated attributes to select online doctors,” Applied Intelligence, 2023, doi: 10.1007/s10489-023-04485-9.

R. Obiedat, L. Al-Qaisi, R. Qaddoura, O. Harfoushi, and A. M. Al-Zoubi, “An intelligent hybrid sentiment analyzer for personal protective medical equipments based on word embedding technique: The covid-19 era,” Symmetry (Basel), vol. 13, no. 12, Dec. 2021, doi: 10.3390/sym13122287.

M. L. Wicaksono, Rusdah, and D. Apriana, “Analisis Sentimen Kesehatan Mental Menggunakan K-Nearest Neighbors pada Sosial Media Twitter,” Bit (Fakultas Teknologi Informasi Universitas Budi Luhur), vol. 19, no. 2, pp. 98–103, 2022, doi: http://dx.doi.org/10.36080/bit.v19i2.2042.

F. Arias, M. Zambrano Nunez, A. Guerra-Adames, N. Tejedor-Flores, and M. Vargas-Lombardo, “Sentiment Analysis of Public Social Media as a Tool for Health-Related Topics,” IEEE Access, vol. 10, pp. 74850–74872, 2022, doi: 10.1109/ACCESS.2022.3187406.

D. Valdez, M. ten Thij, K. Bathina, L. A. Rutter, and J. Bollen, “Social media insights into US mental health during the COVID-19 pandemic: Longitudinal analysis of twitter data,” J Med Internet Res, vol. 22, no. 12, Dec. 2020, doi: 10.2196/21418.

C. Ruiz-Núñez et al., “Sentiment Analysis on Twitter: Role of Healthcare Professionals in the Global Conversation during the AstraZeneca Vaccine Suspension,” Int J Environ Res Public Health, vol. 20, no. 3, Feb. 2023, doi: 10.3390/ijerph20032225.

J. Lee et al., “Health information technology trends in social media: Using twitter data,” Healthc Inform Res, vol. 25, no. 2, pp. 99–105, Apr. 2019, doi: 10.4258/hir.2019.25.2.99.

Y. Liu, R. Stouffs, and Y. L. Theng, “Sentiment analysis on social media for identifying public awareness of type 2 diabetes,” in The 54th International Conference of the Architectural Science Association (ANZAScA) 2020, 2020, pp. 956–965. [Online]. Available: https://www.dowjones.com/products/factiva/

E. Rasyid, R. Nikmah, A. P. Prasetyo, W. Tunggali, and H. A. Sugiantoro, “Sentiment Analysis of Health Care Professionals on Twitter,” in The 2nd International Conference on Communication Science (ICCS 2022), Mataram, 2022, pp. 650–657.

Z. A. Diekson, M. R. B. Prakoso, M. S. Q. Putra, M. S. A. F. Syaputra, S. Achmad, and R. Sutoyo, “Sentiment analysis for customer review: Case study of Traveloka,” Procedia Comput Sci, vol. 216, pp. 682–690, 2023, doi: 10.1016/j.procs.2022.12.184.

M. J. Islam, R. Datta, and A. Iqbal, “Actual rating calculation of the zoom cloud meetings app using user reviews on google play store with sentiment annotation of BERT and hybridization of RNN and LSTM,” in Expert Systems with Applications, Elsevier Ltd, Aug. 2023. doi: 10.1016/j.eswa.2023.119919.

N. N. Arief and A. B. Pangestu, “Perception and Sentiment Analysis on Empathic Brand Initiative During the COVID-19 Pandemic: Indonesia Perspective,” Journal of Creative Communications, vol. 17, no. 2, pp. 162–178, Jul. 2022, doi: 10.1177/09732586211031164.

M. Z. Ansari, M. B. Aziz, M. O. Siddiqui, H. Mehra, and K. P. Singh, “Analysis of Political Sentiment Orientations on Twitter,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 1821–1828. doi: 10.1016/j.procs.2020.03.201.

X. Chen, Y. Cho, and S. Y. Jang, “Crime prediction using Twitter sentiment and weather,” in 2015 Systems and Information Engineering Design Symposium, SIEDS 2015, Institute of Electrical and Electronics Engineers Inc., Jun. 2015, pp. 63–68. doi: 10.1109/SIEDS.2015.7117012.

L. F. Narulita, “Analisa Sentimen Pada Tinjauan Buku Dengan Algoritma K-Nearest Neighbour,” Konvergensi, vol. 13, no. 2, pp. 76–81, 2017, doi: https://doi.org/10.30996/konv.v13i2.2758.

F. Yulianto, H. Junaedi, S. Tjandra, and A. Pascarini, “Analisa Sentimen Untuk Mengidentifikasi Kecenderungan Radikalisme dengan Naive Bayes,” Konvergensi, vol. 17, no. 2, pp. 75–88, 2021, doi: https://doi.org/10.30996/konv.v17i2.5470.

I. Aattouchi, S. Elmendili, and F. Elmendili, “Sentiment Analysis of Health Care: Review,” in E3S Web of Conferences, EDP Sciences, Nov. 2021. doi: 10.1051/e3sconf/202131901064.